中国农业科学院草原研究所(中国农业科学院草原研究所官网)



中国农业科学院草原研究所,中国农业科学院草原研究所官网

粮食安全关乎国计民生,减少粮食产后损耗是保障粮食安全的重要途径,是增加粮食有效供给的“无形良田”,等同于粮食增产。霉菌及毒素污染是导致粮食品质劣变,造成粮食产后损失的最主要原因之一,严重威胁粮食安全。黄曲霉是一种广泛分布的腐生丝状真菌,其次级代谢产物黄曲霉毒素B1 (AFB1),是迄今为止发现的最具毒性、最具致癌性的天然化合物,毒素通过污染粮食、饲料等进入食物链,危害食品安全和人民生命健康。因此,解析真菌毒素的合成调控过程,尤其是黄曲霉毒素的调控机制,为靶向开发精准防控技术,从源头控制毒素污染提供重要理论依据。

中国农业科学研究院农产品加工所生物毒素团队揭示黄曲霉Fus3-MAPK信号路径调控黄曲霉生长及毒素合成新机制,研究成果分别发表在国际著名学术期刊Microbiology Spectrum(IF: 7.171)和Toxins(IF:4.546)上。

团队研究结果表明,Fus3-MAPK通路中四个蛋白均正调控黄曲霉生长、孢子形成、菌核和毒素合成,四个蛋白存在物理互作,磷酸信号通过Ste7-Ste11-Fus3通路传递,而Fus3是该通路关键末端激酶。此前已知Fus3能够正调控AFB1的合成,但Fus3通过磷酸化哪个下游关键蛋白调控AFB1还未有明确报道。团队研究发现,Fus3并未通过调控毒素合成基因簇的转录表达影响毒素合成。但创新性地发现乙酰辅酶A羧化酶是Fus3下游的关键磷酸化靶标,Fus3主要通过磷酸化水平调控影响该酶活性,进而通过影响乙酰辅酶A和丙二酰辅酶A的水平,调控AFB1产生。研究明确了磷酸激酶Fus3和乙酰辅酶A羧化酶是影响黄曲霉的毒素合成的关键蛋白,也是潜在的关键防控靶点,同时也揭示了磷酸激酶Fus3与碳源代谢紧密关联,为进一步解析碳代谢和次生代谢产物合成的关联,明确碳代谢的磷酸信号传递过程,奠定了重要的理论研究基础。

图1 Fus3-MAPK通路调控黄曲霉生长发育和毒素合成的机制

另一项研究结果表明,在碳代谢阻遏(CCR)通路中,核心转录因子CreA的共抑制子SsnF-RocA蛋白复合体,参与CCR通路的调控,同时SsnF和RocA正调控黄曲霉生长发育和渗透胁迫响应,能够通过调控毒素合成基因表达的方式影响毒素合成;研究还构建了SsnF、RcoA和CreA的蛋白互作模型,初步验证了SsnF、RcoA和CreA三者之间的互作关系。上述两项研究进一步完善了黄曲霉生长发育和毒素合成调控网络,为真菌毒素精准防控和粮油保质减损技术研发提供了理论依据。

图2 碳代谢阻遏共抑制子Ssnf-RcoA调控黄曲霉生长发育和毒素合成的机制

项目支持:

研究得到了国家自然科学基金(31972179、32001813)、国家重点研发计划(2016YFD0400105)、国家花生产业技术体系(CARS-13)和农业科技创新工程项目(CAAS- ASTIP-2021-IFST)的资助。

原文连接:

https://doi.org/10.1128/spectrum.01269-21

https://doi.org/10.3390/toxins14030174

文章来源于中国农业科学院农产品加工研究所,点击下方 阅读原文 即可查看英文摘要原文。

为进一步促进动物源食品科学的发展,带动产业的技术创新,更好的保障人类身体健康和提高生活品质,北京食品科学研究院和中国食品杂志社在宁波和西宁成功召开前两届“动物源食品科学与人类健康国际研讨会”的基础上,将与郑州轻工业大学、河南农业大学、河南工业大学、河南科技学院、许昌学院于2022年5月7-8日在河南郑州共同举办“2022年动物源食品科学与人类健康国际研讨会”。欢迎相关专家、学者、企业家参加此次国际研讨会。

中国农业科学院草原研究所(中国农业科学院草原研究所官网)



赞 (0)